Non-resonant Mie scattering: Emergent optical properties of core-shell polymer nanowires

نویسندگان

  • Tural Khudiyev
  • Ersin Huseyinoglu
  • Mehmet Bayindir
چکیده

We provide the in-depth characterization of light-polymer nanowire interactions in the context of an effective Mie scattering regime associated with low refractive index materials. Properties of this regime sharply contrast with these of resonant Mie scattering, and involve the formation of strictly forward-scattered and coupling-free optical fields in the vicinity of core-shell polymer nanowires. Scattering from these optical fields is shown to be non-resonant in nature and independent from incident polarization. In order to demonstrate the potential utility of this scattering regime in one-dimensional (1D) polymeric nanostructures, we fabricate polycarbonate (PC) - polyvinylidene difluoride (PVDF) core-shell nanowires using a novel iterative thermal drawing process that yields uniform and indefinitely long core-shell nanostructures. These nanowires are successfully engineered for novel nanophotonics applications, including size-dependent structural coloration, efficient light capture on thin-film solar cells, optical nano-sensors with ultrahigh sensitivity and a mask-free photolithography method suitable for the straightforward production of 1D nanopatterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core-shell colloidal particles with dynamically tunable scattering properties.

We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and t...

متن کامل

Superenhancers: Novel opportunities for nanowire optoelectronics

Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practi...

متن کامل

Light scattering by nonlinear cylindrical multilayer structures

We study light scattering by cylindrical multilayer structures containing Kerr-type nonlinear materials. We develop a new semi-analytical method for solving such nonlinear problems by reducing the original 2D system by a 1D nonlinear Helmholtz equation. We apply our method for the case of wave scattering by the core-shell metal-dielectric nanowire and show that the nonlinearity allows us to con...

متن کامل

Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires.

We have carried out detailed investigations on the light absorption mechanism in single crystalline silicon (c-Si) (core)/amorphous Si (a-Si) (shell) coaxial nanowires (NWs). Based on the Lorenz-Mie light scattering theory, we have found that the light absorption in the coaxial NWs relies on the leaky mode resonances and that the light absorption can be optimized towards photovoltaic applicatio...

متن کامل

Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires.

We present a comparative investigation of the morphological, structural, and optical properties of vertically aligned ZnO nanowires (NWs) before and after high energy argon ion (Ar(+)) milling. It is found that the outer regions of the as-grown sample change from crystalline to amorphous, and ZnO core-shell NWs with ZnO nanocrystals embedded are formed after Ar(+) milling. Optical properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014